Let \(G \) be a (two-player deterministic) mean-payoff game. The weights are integers and label edges. We let \(W \) denote the largest weight in absolute value. The mean-payoff objective is that the infimum limit of the weights seen along a path is non-negative (\(\geq 0 \)).

Question 1: Prove that if Eve has a winning strategy, then she has a strategy that ensures that at all times, the total sum remains always larger than or equal to \(-nW \). Is the value \(nW \) optimal?

Question 2: We construct a deterministic automaton \(A \). The alphabet is the set of weights of \(G \). The set of states is \([-nW, nW]\) plus an extra sink rejecting state \(\perp \) and a sink accepting state \(\top \). The automaton starts from the state \(0 \) and stores the total sum of the weights, restricted to \([-nW, nW]\). The automaton rejects (goes to \(\perp \)) if the total sum goes below \(-nW\). If the total sum goes above \(nW \), it stays in \(\top \). Important! **All** states except for \(\perp \) are accepting.

Construct a safety game over the synchronised product of \(G \) and \(A \) such that Eve has a winning strategy in the mean-payoff game \(G \) if and only if Eve has a winning strategy in the safety game \(G \times A \).

Question 3: Construct an algorithm for solving mean-payoff games based on the construction above. Analyse its (time) complexity.

Question 4: Construct an algorithm for solving CoBüchi games based on the construction above. Analyse its (time) complexity.

Question 5: Let \(k \) be the number of different weights in the mean-payoff game \(G \). In the similar way as above, construct an algorithm for solving mean-payoff games whose complexity is \(O(mn^k) \).

Question 6: In the constructions above, can we avoid constructing explicitly the automaton \(A \) to have a better space complexity for solving mean-payoff games?