Exam MPRI

2021

Note:

• Lecture notes are allowed: using theorems proved during the lectures is expected.
• Although they look similar, the exercises 1 and 2 are independent, and answers from one are not useful or required for the other one.

Definitions for Exercises 1 and 2

This is just a reminder, this is the definitions used in Nathanaël Fijalkow’s lectures.

We consider two-player deterministic finite games. An arena \(A \) is given by a set \(V \) of vertices with \(V = V_{\text{Eve}} \cup V_{\text{Adam}} \) and a set \(E \subseteq V \times V \) of edges. We make the assumption that every vertex has at least one outgoing edge. A winning condition for \(A \) is \(W \subseteq V^\omega \). A game \(G \) is a pair \((A, W) \).

A strategy for Eve is \(\sigma : V^* \cdot V_{\text{Eve}} \to E \), and for Adam \(\tau : V^+ \cdot V_{\text{Adam}} \to E \). A path is a sequence \(v_0v_1 \ldots \) such that for all \(i \) we have \((v_i, v_{i+1}) \in E \). It is consistent with \(\sigma \) if for all \(i \), if \(v_i \in V_{\text{Eve}} \) then \(\sigma(v_0 \ldots v_i) = (v_i, v_{i+1}) \). The strategy \(\sigma \) is winning from \(v \in V \) if all infinite paths \(\pi \) from \(v \) consistent with \(\sigma \) satisfy \(W \), meaning \(\pi \in W \). In that case we say that \(v \) is winning for Eve. Symmetrically we define \(v \) being winning for Adam.

We say that \(G \) is determined if for all \(v \in V \), either \(v \) is winning for Eve or \(v \) is winning for Adam. All games we consider are determined (Martin’s theorem says that it holds for any Borel objective): we use this result without proving it. We write \(W_{\text{Eve}}(G) \) for the set of winning vertices for Eve, and \(W_{\text{Adam}}(G) \) for Adam. Then \(G \) is determined if \(W_{\text{Eve}}(G) \cup W_{\text{Adam}}(G) = V \).

A positional strategy for Eve is \(\sigma : V_{\text{Eve}} \to E \), and for Adam \(\tau : V_{\text{Adam}} \to E \). We say that \(G \) is positionally determined for Eve if for all \(v \in W_{\text{Eve}}(G) \), there exists a positional winning strategy from \(v \). Similarly for Adam.

An objective is \(\Omega \subseteq C^\omega \) with \(C \) a set of colours. The objective \(\Omega \) and a colouring function \(\text{col} : V \to C \) (we colour vertices) induce a condition \(\Omega[\text{col}] \subseteq V^\omega \):

\[
\Omega[\text{col}] = \{v_0v_1 \cdots : \text{col}(v_0)\text{col}(v_1) \cdots \in \Omega\}.
\]

We say that \(G = (A, \Omega[\text{col}]) \) has objective \(\Omega \), and that:

• \(\Omega \) is prefix independent if for all \(w \in C^*, w' \in C^\omega \) we have \(w' \in \Omega \iff ww' \in \Omega \).
• \(\Omega \) is positionally determined for Eve if all games with objectives \(\Omega \) are positionally determined.
• \(\Omega \) is positionally determined if it holds for both Eve and Adam.

In evaluating algorithms the important parameters from the graph are \(n \) the number of vertices and \(m \) the number of edges.
Exercise 1

Let $C = [1, d]$ for $d \in \mathbb{N}$. We define the weak parity objective:

$$\text{WeakParity} = \{ \rho \in [1, d]^\omega : \max(\rho) \text{ is even} \}.$$

Question 1: Prove or disprove: WeakParity is prefix independent.

Let G be a game with objective WeakParity: $G = (A, \text{WeakParity}[\text{col}])$. Let $V_d = \{ v \in V : \text{col}(v) = d \}$. Let us assume that d is even.

Question 2: Show that if Attr$_{Eve}(V_d) = V$, then $W_{Eve}(G) = V$.

For $F \subseteq V$ we define the reachability condition Reach$(F) = \{ v_0 v_1 \cdots : \exists i \in \mathbb{N}, v_i \in F \}$. We write Attr$_{Eve}(F)$ for $W_{Eve}(A, \text{Reach}(F))$.

Question 3: Define the game induced from G by $V \setminus \text{Attr}_{Eve}(d)$ and show that in this induced game, every vertex has at least one outgoing edge (so it is well defined).

Question 4: Let G' the game induced from G by $V \setminus \text{Attr}_{Eve}(d)$. Show that $W_{Eve}(G) = \text{Attr}_{Eve}(V_d) \cup W_{Eve}(G')$.

Question 5: Construct an algorithm for solving weak parity games (meaning computing the set of winning vertices for Eve) and evaluate its complexity.

Question 6: Prove or disprove (for both players): WeakParity is positionally determined.

Exercise 2

Let $C = [1, k]$ for $k \in \mathbb{N}$. We define the generalized CoBüchi objective:

$$\text{GenCoBuchi} = \{ \rho \in [1, k]^\omega : \exists i \in [1, k], i \notin \text{inf}(\rho) \} ,$$

where $\text{inf}(\rho)$ is the set of colours appearing infinitely many times in ρ.

Question 1: Prove or disprove: GenCoBuchi is prefix independent.

Question 2: Prove or disprove (for both players): GenCoBuchi is positionally determined.

Let G be a game with objective GenCoBuchi: $G = (A, \text{GenCoBuchi}[\text{col}])$. We write $V_i = \{ v \in V : \text{col}(v) = i \}$, and for $F \subseteq V$ we write CoBuchi$(F) = \{ \pi \in V^\omega : \text{inf}(\rho) \cap F = \emptyset \}$.

Question 3: Prove or disprove: $W_{Eve}(G) = \bigcup_{i \in [1, k]} W_{Eve}(A, \text{CoBuchi}(V_i))$.

Question 4: Show that if for all $i \in [1, k]$ we have $W_{Eve}(A, \text{CoBuchi}(V_i)) = \emptyset$, then $W_{Eve}(G) = \emptyset$.

Question 5: Assume that for some $i \in [1, k]$ we have $W_{Eve}(A, \text{CoBuchi}(V_i)) \neq \emptyset$, show that the game G' induced from G by $V \setminus W_{Eve}(A, \text{CoBuchi}(V_i))$ is well defined, and that $W_{Eve}(G) = W_{Eve}(G') \cup W_{Eve}(A, \text{CoBuchi}(V_i))$.

Question 6: Construct an algorithm for solving generalized CoBüchi games (meaning computing the set of winning vertices for Eve) and evaluate its complexity.