Let G be a (two-player deterministic finite) reachability game. The underlying graph is $G = (V, E)$; we make the assumption that every vertex has at least one outgoing edge. We write $V = V_{\text{Eve}} \uplus V_{\text{Adam}}$ for the set of vertices controlled by Eve and Adam. The reachability objective is $\text{REACH}(F) = V \ast F V^\omega$, i.e. the set of paths visiting $F \subseteq V$ at least once.

The goal of this problem is to construct efficient algorithms for computing $W_{\text{Eve}}(\text{REACH}(F))$, the set of vertices from which Eve has a winning strategy for the reachability objective. The important parameters here are n the number of vertices and m the number of edges.

For representation purposes, the game is given in the following way: for each vertex v, one bit describes whether it is controlled by Eve or Adam, and then we list all the successors of v.

The objective F is given as a boolean vector over V. To compute $W_{\text{Eve}}(\text{REACH}(F))$ we represent it as well using a boolean vector over V.

Question 1: We write $\mathcal{P}(V)$ for the set of subsets of V. Let us consider the operator $\text{Pre}_F : \mathcal{P}(V) \rightarrow \mathcal{P}(V)$ defined by

$$\text{Pre}_F(X) = F \cup \{ v \in V_{\text{Eve}} : \exists (v, v') \in E, v' \in X \} \cup \{ v \in V_{\text{Adam}} : \forall (v, v') \in E, v' \in X \}.$$

Prove that Pre_F is a monotone operator with respect to inclusion: if $X \subseteq X'$ then $\text{Pre}_F(X) \subseteq \text{Pre}_F(X')$.

Solution: “Oh come on!” is an acceptable answer.

Question 2: A prefixed point of Pre_F is a set $X \subseteq V$ such that $\text{Pre}_F(X) \subseteq X$. Prove that:

(i) There exists a prefixed point of Pre_F.

(ii) $W_{\text{Eve}}(\text{REACH}(F))$ is a prefixed point of Pre_F.

(iii) The intersection of two prefixed points of Pre_F is another prefixed point of Pre_F.

(iv) There exists a least prefixed point of Pre_F.

(v) $W_{\text{Eve}}(\text{REACH}(F))$ is the least prefixed point of Pre_F.

Solution:

(i) V is a fixed point of Pre_F.

(ii) Easy.

(iii) Easy.

(iv) Consequence of the previous point.

(v) It is a fixed point. To prove the converse, consider the complement (done in the lecture).
Question 3: Construct an algorithm for computing $W_{Eve}(REACH(F))$ based on Knaster - Tarski fixed point theorem, and show that it has complexity $O(n \cdot m)$.

Solution: Knaster - Tarski fixed point theorem gives an algorithm for computing the least prefixed point: it says that the sequence $\langle \text{Pre}_k(\emptyset) \rangle_{k \geq 0}$ is eventually constant and its limit is the least prefixed point of Pre_F. For each k we construct $\text{Pre}_k(\emptyset)$ in a naive way, which has complexity $O(m)$. Since there are n iterations we get complexity $O(n \cdot m)$.

We want to improve the complexity to $O(n + m)$. Note that since every vertex has at least one outgoing edge, $n \leq m$, so this is actually $O(m)$.

Question 4: Prove that in time $O(m)$ we can get the following equivalent representation of the game: for each vertex v, one bit describes whether it is controlled by Eve or Adam, and then we list all the predecessors of v.

Solution: We go through all edges, and add them to the corresponding list.

Question 5: Prove that the algorithm given in pseudo-code below computes $W_{Eve}(REACH(F))$ and that its complexity is $O(m)$.

Algorithm 1: The linear time algorithm for reachability games.

Data: A reachability game.

Function Attractor():

- $A \leftarrow F$
- for $v \in V_{Adam}$ do
 - number-edges(v) \leftarrow number of outgoing edges of v
 - $k \leftarrow 1$
 - $X_k \leftarrow F$
- repeat
 - for $v \in X_k$ do
 - Treat(v)
 - $k \leftarrow k + 1$
 - until $X_k = X_{k+1}$
- return A

Function Treat(v):

- for $e = (u, v) \in E$ do
 - if $u \in V_{Adam}$ and $u \notin A$ then
 - number-edges(u) \leftarrow number-edges(u) - 1
 - if number-edges(u) = 0 then
 - Add u to A
 - Add u to X_{k+1}
 - if $u \in V_{Eve}$ and $u \notin A$ then
 - Add u to A
 - Add u to X_{k+1}

Solution: To prove correctness we need a suitable invariant: $X_k = \text{Pre}_k(\emptyset)$.

A vertex can be added to A at most once, implying that an edge can be considered at most once, so the complexity is $O(m)$.