Homework assignment MPRI 2023

Deadline: 24 November 2023 AOE

1 Dominions

Recall that we assume that in our games every vertex has an outgoing edge. This is for technical convenience, as it avoids defining what happens to finite plays. Given a game \(\mathcal{G} \), the subgame induced by a set of vertices \(X \) is defined in the natural way and written \(\mathcal{G}[X] \). However, it is only well defined if for every vertex in \(X \), there exists an outgoing edge to \(X \), to satisfy the assumption of games. For \(X \) a subset of vertices, let us write \(\text{Attr}_{\text{Eve}}(X, \mathcal{G}) \) for the attractor of Eve to \(X \) in \(\mathcal{G} \).

For any \(X \), the set \(\mathcal{G}[\text{Attr}_{\text{Eve}}(X, \mathcal{G})] \) induces a subgame, which we write \(\mathcal{G}[\text{Attr}_{\text{Eve}}(X, \mathcal{G})] \).

Let us introduce two more definitions:

• We say that \(X \) is closed for Eve in \(\mathcal{G} \) if \(\mathcal{G} \) is closed for Eve in \(\mathcal{G} \). Equivalently, every vertex of Eve in \(X \) has at least one outgoing edge to \(X \), and every vertex of Adam in \(X \) has all outgoing edges to \(X \). In words, Eve can ensure to stay in \(X \).

• A dominion for Eve in \(\mathcal{G} \) is a subset \(D \) of vertices such that for every vertex of \(D \), Eve has a strategy which is both winning and ensuring that all plays remain in \(D \) forever.

All definitions are given using Eve’s point of view but easily adapted to Adam’s.

Question 1 (2 drawings). Prove by drawing the following two properties. Let \(D \) be a dominion for Eve in \(\mathcal{G} \), and \(X \) a subset of vertices.

• If \(D \) does not intersect with \(X \), then \(D \) is also a dominion for Eve in \(\mathcal{G}[\text{Attr}_{\text{Adam}}(X, \mathcal{G})] \).

• If \(X \) is closed for Adam in \(\mathcal{G} \), then \(D \cap X \) is a dominion for Eve in \(\mathcal{G}[X] \).

2 The algorithm

We spell out the pseudocode of \(\text{SolveEven} \) in Algorithm 1, leaving out the symmetric \(\text{SolveOdd} \).

Algorithm 1: The algorithm for computing the winning region of parity games.

```plaintext
Data: A parity game \( \mathcal{G} \) with priorities in \([1, d]\)
Function \( \text{SolveEven}(\mathcal{G}, d, s_{\text{Eve}}, s_{\text{Adam}}) \):
  if \( \mathcal{G} \) is empty or \( s_{\text{Adam}} = 0 \) then
    return \( V(\mathcal{G}) \)
  \( G_1 \leftarrow \text{SolveOdd}(\mathcal{G}, d, s_{\text{Eve}}, \lfloor s_{\text{Adam}}/2 \rfloor) \)
  \( V_d \leftarrow \{ v \in V(G_1) : \text{col}(v) = d \} \)
  \( H \leftarrow G_1 \setminus \text{Attr}_{\text{Eve}}(V_d, G_1) \)
  \( W_{\text{Adam}} \leftarrow \text{SolveOdd}(H, d - 1, s_{\text{Eve}}, s_{\text{Adam}}) \)
  \( G_2 \leftarrow G_1 \setminus \text{Attr}_{\text{Adam}}(W_{\text{Adam}}, G_1) \)
  \( G_3 \leftarrow \text{SolveEven}(G_2, d, s_{\text{Eve}}, \lfloor s_{\text{Adam}}/2 \rfloor) \)
  return \( V(G_3) \)
```
Question 2 (1000 words). A picture is worth a thousand words: make a good drawing explaining the algorithm.

We will prove the following properties of the algorithm.

- If d is even, then $\text{SolveEven}(G, d, s_{\text{Eve}}, s_{\text{Adam}})$ is closed for Eve in G and:

 (i) contains all dominions for Eve in G of size up to $s_{\text{Eve}},$

 (ii) does not intersect any dominion for Adam in G of size up to $s_{\text{Adam}}.$

- If d is odd, then $\text{SolveOdd}(G, d, s_{\text{Eve}}, s_{\text{Adam}})$ is closed for Adam in G and:

 (i) contains all dominions for Adam in G of size up to $s_{\text{Adam}},$

 (ii) does not intersect any dominion for Eve in G of size up to $s_{\text{Eve}}.$

Question 3 (2 lines). Explain why this implies that $\text{SolveEven}(G, d, n, n) = W_{\text{Eve}}(G).$

Question 4 (1 line). Explain why it is enough to prove only the part about $\text{SolveEven}.$

The proof is by induction on $d + s_{\text{Eve}} + s_{\text{Adam}}.$

Question 5 (2 lines). Deal with the base cases. (Bonus: why is the SolveOdd case not entirely symmetric?)

Question 6 (2 lines). Show that the algorithm terminates.

Question 7 (~10 lines). Show that the set returned by $\text{SolveEven}(G, d, s_{\text{Eve}}, s_{\text{Adam}})$ is closed for Eve in $G.$

Question 8 (~15 lines). Show the first property: the set returned by $\text{SolveEven}(G, d, s_{\text{Eve}}, s_{\text{Adam}})$ contains all dominions of Eve in G of size up to $s_{\text{Eve}}.$

We proceed with showing the second property: the set returned by $\text{SolveEven}(G, d, s_{\text{Eve}}, s_{\text{Adam}})$ does not intersect with any dominion for Adam of size up to $s_{\text{Adam}}.$ Let D be such a dominion.

We let S be the union of all dominions for Adam in $G[D]$ of size up to $\lfloor s_{\text{Adam}}/2 \rfloor,$ and $A = \text{Attr}_{\text{Adam}}(S, G[D]).$ We distinguish two cases: $A = D$ and $A \neq D.$

Question 9 (~10 lines). Show that if $A = D,$ then D does not intersect with G_3 and conclude.

We will now consider the case $A \neq D.$ Let us start with a lemma:

Lemma 1. Let D be a non-empty dominion for Eve in $G.$ If all priorities in D are at most d and d is odd, then there exists $D' \subseteq D$ a non-empty dominion for Eve in G without vertices of priority $d.$

Question 10 (~5 lines). Prove the lemma.

Question 11 (~20 lines). Assume $A \neq D,$ show that $D \backslash A$ is a dominion in $G[D \backslash A],$ and use the lemma to conclude.

3 Complexity analysis

Question 12 (~10 lines). Write the recursive equations satisfied by the complexity of the algorithm as a function of n number of vertices, m number of edges, d number of priorities, and $s_{\text{Eve}}, s_{\text{Adam}}.$ Compare with universal trees.