Exam MPRI

2023

Lecture notes are allowed: using theorems proved during the lectures is expected.

Definitions for Exercise 1

This is just a reminder, this is the definitions used in Nathanaël Fijalkow's lectures.

We consider two-player deterministic finite games. An arena \mathcal{A} is given by a set V of vertices with $V = V_{\text{Eve}} \oplus V_{\text{Adam}}$ and a set $E \subseteq V \times V$ of edges. We make the assumption that every vertex has at least one outgoing edge. A winning condition for \mathcal{A} is $W \subseteq V^{\omega}$. A game \mathbb{G} is a pair (\mathcal{A}, W) .

A strategy for Eve is $\sigma : V^* \cdot V_{\text{Eve}} \to E$, and for Adam $\tau : V^+ \cdot V_{\text{Adam}} \to E$. A path is a sequence $v_0v_1...$ such that for all i we have $(v_i, v_{i+1}) \in E$. It is consistent with σ if for all i, if $v_i \in V_{\text{Eve}}$ then $\sigma(v_0...v_i) = (v_i, v_{i+1})$. The strategy σ is winning from $v \in V$ if all infinite paths π from v consistent with σ satisfy W, meaning $\pi \in W$. In that case we say that v is winning for Eve. Symmetrically we define v being winning for Adam.

We say that \mathbb{G} is determined if for all $v \in V$, either v is winning for Eve or v is winning for Adam. All games we consider are determined (Martin's theorem says that it holds for any Borel objective): we use this result without proving it. We write $W_{\text{Eve}}(\mathbb{G})$ for the set of winning vertices for Eve, and $W_{\text{Adam}}(\mathbb{G})$ for Adam. Then \mathbb{G} is determined if $W_{\text{Eve}}(\mathbb{G}) \cup W_{\text{Adam}}(\mathbb{G}) = V$.

A positional strategy for Eve is $\sigma : V_{\text{Eve}} \to E$, and for Adam $\tau : V_{\text{Adam}} \to E$. We say that \mathbb{G} is positionally determined for Eve if for all $v \in W_{\text{Eve}}(\mathbb{G})$, there exists a positional winning strategy from v. Similarly for Adam.

An objective is $\Omega \subseteq C^{\omega}$ with *C* a set of colours. The objective Ω and a colouring function $\operatorname{col}: V \to C$ (we colour vertices) induce a condition $\Omega[\operatorname{col}] \subseteq V^{\omega}$:

$$\Omega[\mathbf{col}] = \{v_0 v_1 \cdots : \mathbf{col}(v_0) \mathbf{col}(v_1) \cdots \in \Omega\}.$$

We say that $\mathbb{G} = (\mathcal{A}, \Omega[\text{col}])$ has objective Ω , and that:

- Ω is prefix independent if for all $w \in C^*, w' \in C^{\omega}$ we have $w' \in \Omega \iff ww' \in \Omega$.
- Ω is positionally determined for Eve if all games with objectives Ω are positionally determined.
- Ω is positionally determined if it holds for both Eve and Adam.

In evaluating algorithms the important parameters from the graph are n the number of vertices and m the number of edges.

Exercise 1: Finitary parity games

Let C = [1, d] for $d \in \mathbb{N}$. Let us fix an arena \mathcal{A} and col : $V \to C$. We define the finitary parity objective:

FinitaryParity = {
$$\rho \in [1, d]^{\omega} : \exists N, B \in \mathbb{N}, \forall i \ge N, \exists j \in [i, i + B], \rho_i \le \rho_j \text{ and } \rho_j \text{ even}$$
}.

Two examples:

- $3 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdots \in \mathsf{FinitaryParity}$
- $4 \cdot (3 \cdot 2 \cdot 4) \cdot (3 \cdot \underbrace{2 \cdot 2}_{2 \text{ times}} \cdot 4) \dots (3 \cdot \underbrace{2 \cdot 2 \dots 2}_{n \text{ times}} \cdot 4) \dots \notin \text{FinitaryParity}$

Question 1: Prove or disprove:

- FinitaryParity is prefix independent,
- $W_{\text{Eve}}(\mathcal{A}, \text{Parity}[\text{col}]) \subseteq W_{\text{Eve}}(\mathcal{A}, \text{FinitaryParity}[\text{col}]),$
- $W_{\text{Eve}}(\mathcal{A}, \text{FinitaryParity[col]}) \subseteq W_{\text{Eve}}(\mathcal{A}, \text{Parity[col]}),$
- FinitaryParity is positionally determined for Adam.

We define the bounded parity objective:

BoundedParity = { $\rho \in [1, d]^{\omega}$: $\exists B \in \mathbb{N}, \forall i \in \mathbb{N}, \exists j \in [i, i + B], \rho_i \leq \rho_j \text{ and } \rho_j \text{ even}$ }.

Guestion 2: Show that

- $W_{\text{Eve}}(\mathcal{A}, \text{BoundedParity}[\text{col}]) \subseteq W_{\text{Eve}}(\mathcal{A}, \text{FinitaryParity}[\text{col}]),$
- if $W_{\text{Eve}}(\mathcal{A}, \text{BoundedParity}[\text{col}]) = \emptyset$, then $W_{\text{Eve}}(\mathcal{A}, \text{FinitaryParity}[\text{col}]) = \emptyset$.

Question 3: Assuming an algorithm for solving bounded parity games, construct an algorithm for solving finitary parity games. What is the complexity of the algorithm (as a function of the complexity of the algorithm for bounded parity games)?

We define the weak parity objective:

$$\mathsf{WeakParity} = \left\{ \rho \in [1,d]^{\omega} : \max(\rho) \text{ is even} \right\}.$$

Question 4: Show that

- $W_{\text{Eve}}(\mathcal{A}, \text{BoundedParity}[\text{col}]) \subseteq W_{\text{Eve}}(\mathcal{A}, \text{WeakParity}[\text{col}]),$
- if $W_{\text{Eve}}(\mathcal{A}, \text{WeakParity}[\text{col}]) = V$, then $W_{\text{Eve}}(\mathcal{A}, \text{BoundedParity}[\text{col}]) = V$.

Guestion 5: Assuming an algorithm for solving weak parity games, construct an algorithm for solving bounded parity games. What is the complexity of the algorithm (as a function of the complexity of the algorithm for weak parity games)?

Let us now construct an algorithm for solving weak parity games. Let $V_d = \{v \in V : col(v) = d\}$. We assume that d is even.

Question 6: Show that if $Attr_{Eve}(V_d) = V$, then $W_{Eve}(\mathcal{A}, WeakParity[col]) = V$.

Question 7: Let \mathbb{G}' the weak parity game induced from \mathbb{G} by $V \setminus \operatorname{Attr}_{\operatorname{Eve}}(d)$. Show that $W_{\operatorname{Eve}}(\mathbb{G}) = \operatorname{Attr}_{\operatorname{Eve}}(V_d) \cup W_{\operatorname{Eve}}(\mathbb{G}')$.

Guestion 8: Construct an algorithm for solving weak parity games (meaning computing the set of winning vertices for Eve) and evaluate its complexity.

Question 9: What is the complexity of solving finitary parity games?

Question 10: Prove or disprove:

- WeakParity is positionally determined for Eve,
- BoundedParity is positionally determined for Eve,
- FinitaryParity is positionally determined for Eve.