Solutions Exam MPRI

2020

Let \mathcal{G} be a (two-player deterministic finite) reachability game. The underlying graph is G = (V, E); we make the assumption that every vertex has at least one outgoing edge. We write $V = V_{\text{Eve}} \oplus V_{\text{Adam}}$ for the set of vertices controlled by Eve and Adam. The reachability objective is $\text{REACH}(F) = V^*FV^{\omega}$, *i.e.* the set of paths visiting $F \subseteq V$ at least once.

The goal of this problem is to construct efficient algorithms for computing $W_{\text{Eve}}(\text{REACH}(F))$, the set of vertices from which Eve has a winning strategy for the reachability objective. The important parameters here are *n* the number of vertices and *m* the number of edges.

For representation purposes, the game is given in the following way: for each vertex v, one bit describes whether it is controlled by Eve or Adam, and then we list all the successors of v.

The objective F is given as a boolean vector over V. To compute $W_{\text{Eve}}(\text{REACH}(F))$ we represent it as well using a boolean vector over V.

Question 1: We write $\mathcal{P}(V)$ for the set of subsets of *V*. Let us consider the operator \mathbf{Pre}_F : $\mathcal{P}(V) \to \mathcal{P}(V)$ defined by

$$\mathbf{Pre}_F(X) = F \cup \{ v \in V_{\mathbf{Eve}} : \exists (v, v') \in E, v' \in X \} \cup \{ v \in V_{\mathbf{Adam}} : \forall (v, v') \in E, v' \in X \}.$$

Prove that Pre_F is a monotone operator with respect to inclusion: if $X \subseteq X'$ then $\operatorname{Pre}_F(X) \subseteq \operatorname{Pre}_F(X')$.

Solution: "Oh come on!" is an acceptable answer.

Question 2: A prefixed point of \mathbf{Pre}_F is a set $X \subseteq V$ such that $\mathbf{Pre}_F(X) \subseteq X$. Prove that:

- (i) There exists a prefixed point of \mathbf{Pre}_F .
- (ii) $W_{\text{Eve}}(\text{REACH}(F))$ is a prefixed point of Pre_F .
- (iii) The intersection of two prefixed points of \mathbf{Pre}_F is another prefixed point of \mathbf{Pre}_F
- (iv) There exists a least prefixed point of \mathbf{Pre}_F .
- (v) $W_{\text{Eve}}(\text{REACH}(F))$ is the least prefixed point of Pre_F .

Solution:

- (i) V is a fixed point of \mathbf{Pre}_F .
- (ii) Easy.
- (iii) Easy.
- (iv) Consequence of the previous point.
- (v) It is a fixed point. To prove the converse, consider the complement (done in the lecture).

Question 3: Construct an algorithm for computing $W_{\text{Eve}}(\text{REACH}(F))$ based on Knaster - Tarski fixed point theorem, and show that it has complexity $O(n \cdot m)$.

Solution: Knaster - Tarski fixed point theorem gives an algorithm for computing the least prefixed point: it says that the sequence $(\mathbf{Pre}_F^k(\emptyset))_{k\geq 0}$ is eventually constant and its limit is the least prefixed point of \mathbf{Pre}_F . For each k we construct $\mathbf{Pre}_F^k(\emptyset)$ in a naive way, which has complexity O(m). Since there are n iterations we get complexity $O(n \cdot m)$.

We want to improve the complexity to O(n + m). Note that since every vertex has at least one outgoing edge, $n \leq m$, so this is actually O(m).

Question 4: Prove that in time O(m) we can get the following equivalent representation of the game: for each vertex v, one bit describes whether it is controlled by Eve or Adam, and then we list all the **predecessors** of v.

Solution: We go through all edges, and add them to the corresponding list.

Question 5: Prove that the algorithm given in pseudo-code below computes $W_{\text{Eve}}(\text{REACH}(F))$ and that its complexity is O(m).

Algorithm 1: The linear time algorithm for reachability games.

```
Data: A reachability game.
Function Attractor():
   A \leftarrow F
   for v \in V_{Adam} do
    \ \ number-edges(v) \leftarrownumber of outgoing edges of v
   k \leftarrow 1
   X_k \leftarrow F
   repeat
       for v \in X_k do
        \Box Treat (v)
       k \leftarrow k + 1
   until X_k = X_{k+1}
   return A
Function Treat (v):
   for e = (u, v) \in E do
       if u \in V_{Adam} and u \notin A then
           number-edges(u) \leftarrow number-edges(u) - 1
           if number-edges(u) = 0 then
               Add u to \overline{A}
               Add u to X_{k+1}
       if u \in V_{Eve} and u \notin A then
           Add u to A
           Add u to X_{k+1}
```

Solution: To prove correctness we need a suitable invariant: $X_k = \mathbf{Pre}_F^k(\emptyset)$).

A vertex can be added to A at most once, implying that an edge can be considered at most once, so the complexity is O(m).