
Exam MPRI

24 November 2022

Note:

• Lecture notes are allowed: using theorems proved during the lectures is expected.

• The exercises 1 and 2 are independent.

Definitions for Exercises 1 and 2

This is just a reminder, this is the definitions used in Nathanaël Fijalkow’s lectures.
We consider two-player deterministic finite games. An arena A is given by a set V of vertices

with V “ VEve Z VAdam and a set E Ď V ˆ V of edges. We make the assumption that every vertex
has at least one outgoing edge. A winning condition for A is W Ď V ω. A game G is a pair pA,W q.

A strategy for Eve is σ : V ˚ ¨ VEve Ñ E, and for Adam τ : V ` ¨ VAdam Ñ E. A path is a sequence
v0v1 . . . such that for all i we have pvi, vi`1q P E. It is consistent with σ if for all i, if vi P VEve then
σpv0 . . . viq “ pvi, vi`1q. The strategy σ is winning from v P V if all infinite paths π from v consistent
with σ satisfy W , meaning π P W . In that case we say that v is winning for Eve. Symmetrically we
define v being winning for Adam.

We say that G is determined if for all v P V , either v is winning for Eve or v is winning for Adam.
All games we consider are determined (Martin’s theorem says that it holds for any Borel objective):
we use this result without proving it. We write WEvepGq for the set of winning vertices for Eve, and
WAdampGq for Adam. Then G is determined if WEvepGq Y WAdampGq “ V .

A positional strategy for Eve is σ : VEve Ñ E, and for Adam τ : VAdam Ñ E. We say that G is
positionally determined for Eve if for all v P WEvepGq, there exists a positional winning strategy from
v. Similarly for Adam.

An objective is Ω Ď Cω with C a set of colours. The objective Ω and a colouring function
col : V Ñ C (we colour vertices) induce a condition Ωrcols Ď V ω:

Ωrcols “ tv0v1 ¨ ¨ ¨ : colpv0qcolpv1q ¨ ¨ ¨ P Ωu .

We say that G “ pA,Ωrcolsq has objective Ω, and that:

• Ω is prefix independent if for all w P C˚, w1 P Cω we have w1 P Ω ðñ ww1 P Ω.

• Ω is positionally determined for Eve if all games with objectives Ω are positionally determined.

• Ω is positionally determined if it holds for both Eve and Adam.

In evaluating algorithms the important parameters from the graph are n the number of vertices
and m the number of edges.
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Exercise 1

Let C “ r1, 2ds for d P N. We define the Rabin objective:

Rabin “ tρ P r1, 2dsω : Di P r1, ds, 2i P infpρq ^ 2i ` 1 R infpρqu ,

where infpρq is the set of colours appearing infinitely many times in ρ.

Question 1: Prove or disprove: Rabin is prefix independent.

Solution 1: It is prefix independent because it only looks at which colours appear infinitely
many times.

Let us fix a game G “ pA,Ωrcolsq. For F Ď V the reachability condition is

ReachpF q “ tv0v1 ¨ ¨ ¨ : Di P N, vi P F u .

We write
AttrG

EvepF q “ WEvepA,ReachpF qq

and similarly AttrG
AdampF q “ WAdampA,ReachpF qq “ V zWEvepA,ReachpF qq. The index G is used to

specify that the attractor computation is performed in G (note that it only depends on A). Since
there will be many different games in the rest of this exercise, it is important to specify this
information. Given a game G and a subset F , we define the subgame of G where we remove
AttrG

EvepF q in the expected way, and the same for AttrG
AdampF q.

We now construct an algorithm for solving Rabin games, meaning computing the set of winning
vertices for Eve and Adam. Let G be a Rabin game, we define Ri “ tv P V : colpvq “ 2iu and
Gi “ tv P V : colpvq “ 2i ` 1u.

Let us define Gi the subgame of G where we remove AttrG
AdampGiq, and G1

i the subgame of Gi

where we remove AttrGi

EvepRiq.

Question 2: Show that if WAdampG1
iq “ H, then WAdampGiq “ H.

Solution 2: Let σi be a winning strategy in G1
i and σA an attractor strategy ensuring to reach

a vertex in Ri from any vertex in AttrGi

EvepRiqzRi. We construct a strategy in Gi as follows: as long
as the play remains in G1

i Eve plays using σi, and if it leaves G1
i then Eve plays σA until reaching

Ri. This strategy is winning: a play consistent with it either sees infinitely many times Ri or is
eventually consistent with σi, which implies in both cases that it satisfies Rabin.

Define G2
i the subgame of Gi where we remove AttrGi

AdampWAdampG1
iqq,

Question 3: Show that if WAdampG1
iq ‰ H, then WEvepGiq “ WEvepG2

i q.

Solution 3: We prove both inclusions.

We show WEvepGiq Ď WEvepG2
i q. We actually show the contrapositive: WAdampG2

i q Ă WAdampGiq. We
construct a strategy τ for Adam in G1

i as follows:

• On AttrGi

AdampWAdampG1
iqqzWAdampG1

iq we play the attractor strategy for Adam to reach WAdampG1
iq;

• On WAdampG1
iq we play the winning strategy of Adam in G1

i;

• On WAdampG2
i q we play the winning strategy of Adam in G2

i .

This strategy is winning: a play consistent with it either eventually enters AttrGi

AdampWAdampG1
iqq, and

then it is winning because it later enters WAdampG1
iq and remains there and is consistent with a

winning strategy, or it remains forever in WAdampG2
i q, which implies in both cases that it does not

satisfy Rabin.
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We now show WEvepGiq Ě WEvepG2
i q. Let σ be a winning strategy in WEvepG2

i q. It induces a winning
strategy in Gi: indeed if Eve uses σ in Gi, then the play remains in WEvepG2

i q so it is winning.

Question 4: Show that if for all i P r1, ds, WEvepGiq “ H, then WAdampGq “ V .

Solution 4: We construct a winning strategy for Adam using a memory: the set of memory
states is r1, ds, and in the state i:

• On AttrG
AdampGiq, Adam plays the attractor strategy to reach a vertex in Gi. When reaching Gi

we update the memory state to i ` 1 (or 1 if i “ d).

• On V zAttrG
AdampGiq, which is equal to WAdampGiq since WEvepGiq “ H, Adam plays a winning

strategy in Gi.

This strategy is winning: a play consistent with it either eventually enters WEvepGiq or it remains
forever in AttrG

AdampGiq, which implies in both cases that it does not satisfy Rabin.

Question 5: Assume that WEvepGiq ‰ H. Define G1 the subgame of G where we remove
AttrG

EvepWEvepGiqq. Show that WAdampGq “ WAdampG1q.

Solution 5: We show WAdampGq Ď WAdampG1q. We actually show the contrapositive: WEvepG1q Ď

WEvepGq. We construct a strategy σ in G1:

• On AttrG
EvepWEvepGiqqzWEvepGiq, we play the attractor strategy to reach WEvepGiq.

• On WEvepGiq, we play a winning strategy in Gi.

• On WEvepG1q, we play a winning strategy in G1.

This strategy is winning.
We now show WAdampGq Ě WAdampG1q. Let τ be a winning strategy in WEvepGq. It induces a

winning strategy in G1: indeed if Adam uses τ in G1, then the play remains in WAdampG1q so it is
winning.

Question 6: Combining all of the above, construct an algorithm for solving Rabin games and
evaluate its complexity as a function of n,m, d.

Question 7: Prove or disprove (for both players): Rabin is positionally determined.

Solution 7: Rabin is positionally determined for Eve: looking back at the proofs, we only
construct positional winning strategies. It is not positionally determined for Adam, he needs
memory. Example: Adam needs to see infinitely many times left and infinitely many times right,
so he needs to alternate.

Exercise 2

The goal of this exercise is to prove the following theorem: every prefix-independent submixing
objective is positionally determined for Eve over finite arenas. We say that Ω is submixing if:

if ρ1 “ ρ01 ρ11 ¨ ¨ ¨ ρℓ1 ¨ ¨ ¨ R Ω
and ρ2 “ ρ02 ρ12 ¨ ¨ ¨ ρℓ2 ¨ ¨ ¨ R Ω,
then: ρ1 ’ ρ2 “ ρ01 ρ02 ρ11 ρ12 ¨ ¨ ¨ ρℓ1 ρℓ2 ¨ ¨ ¨ R Ω.

Question 1: Prove or disprove: Parity is submixing. Recall that:

Parity “ tρ P r1, dsω : max infpρq is evenu ,
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where infpρq is the set of colours appearing infinitely many times in ρ.

Solution 1: It is submixing: the maximal priority appearing infinitely many times in ρ1 ’ ρ2 is
the maximum among ρ1 and among ρ2, so if both are odd, then it is odd as well.

The proof is by induction on the following quantity:
ÿ

vPVEve

ˇ

ˇ

␣

pv, v1q : pv, v1q P E
(ˇ

ˇ ´ |VEve|

Question 2: Prove the base case of the induction.

Solution 2: Since we assume that every vertex has an outgoing edge, the base case is when
each vertex of Eve has only one successor. In that case Eve has only one strategy and it is
positional, so the property holds.

We now do the induction step. Let Ω be a prefix-independent submixing objective. Let G a finite
game with objective Ω and assume that Eve has a winning strategy from v0. Let v a vertex of Eve
having outdegree at least two, let us partition the outgoing edges of v into E1 Y E2. We consider
the two games G1 and G2 where we restrict the outgoing edges of v to E1 and to E2, respectively.

Question 3: Prove that Eve has a winning strategy in G1 or in G2. Hint: reason by contradiction
to obtain winning strategies for Adam in G1 and in G2, and construct a strategy for Adam in G.

In the proof, highlight the argument relying on prefix-independence!

Solution 3: We claim that Eve has a winning strategy in either G1 or G2. Let us assume towards
contradiction that this is not the case: then there exist τ1 and τ2 two strategies for Adam which are
winning in G1 and G2 respectively. We construct a strategy τ for Adam in G as follows: it has two
modes, 1 and 2. The initial mode is 1, and the strategy simulates τ1 from the mode 1 and τ2 from
the mode 2. Whenever v is visited, the mode is adjusted: if the outgoing edge is in Ev

1 then the new
mode is 1, otherwise it is 2. To be more specific: when simulating τ1 we play ignoring the parts of
the play using mode 2, so removing them yields a play consistent with τ1. The same goes for τ2.

Consider a play π consistent with σ and τ . Since σ is winning, the play π is winning. It can be
decomposed following which mode the play is in:

mode 1

π0
1

hkkikkj

v0 ¨ ¨ ¨ v

π1
1

hkkikkj

v ¨ ¨ ¨ v ¨ ¨ ¨

mode 2 v ¨ ¨ ¨ v
loomoon

π0
2

v ¨ ¨ ¨ v
loomoon

π1
2

¨ ¨ ¨

where π1 “ π0
1π

1
1 ¨ ¨ ¨ is consistent with τ1 and π2 “ π0

2π
1
2 ¨ ¨ ¨ is consistent with τ2. Since τ1 and τ2 are

winning strategies for Adam, π1 and π2 do not satisfy Ω.

There are two cases: the decomposition is either finite or infinite. If it is finite we get a
contradiction: since π is winning and Ω is prefix independent any suffix of π is winning as well,
contradicting that it is consistent with either τ1 or τ2 hence cannot be winning.

In the second case we get a contradiction using the submixing property: neither π1 nor π2

satisfy Ω, yet their shuffle π does.
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