
Homework assignment MPRI 2024

Deadline: 19 November 2024 AOE

Notations

Let us first define stochastic arenas.

Definition 1 (Stochastic arenas). A stochastic arena is A “ pG,VMax, VMin, VRandom, δq where

• G “ pV,Eq is a graph and V “ VMax Z VMin Z VRandom partitions the vertices into those controlled
by Max, Min, and random vertices.

• δ : VRandom Ñ DpEq is the probabilistic transition function.

Definition 2 (Stochastic reachability games). Let A a stochastic arena. A stochastic reachability
game is G “ pA, ReachpWinqq with Win Ď V .

For simplicity we assume that Win is a sink (meaning a single vertex with a self-loop).
A strategy for Max is a function σ : Paths Ñ DpEq, and similarly for Min. Note that a strategy is

allowed to randomise over its actions. A pure strategy does not use randomisation: σ : Paths Ñ E,
and a positional strategy does not use memory: σ : VMax Ñ DpEq.

When a pair of strategies pσ, τq and an initial vertex u is fixed, we obtain a stochastic process:
we write Pu

σ,τ for the probability measure on infinite plays. We write Pu
σ,τ pReachpWinqq for the

probability that the infinite path reaches Win when Max plays σ, Min plays τ , and we start from u.
We say that the game is determined if valGMaxpuq “ valGMinpuq, and in that case define the value

of u in G as valGpuq. A strategy σ is optimal from u if valσpuq “ valGpuq, and simply optimal if it is
optimal from all vertices.

Reminders

Theorem 1 (Pure positional determinacy for stochastic reachability games). Stochastic reachability
games are uniformly purely positionally determined.

Let us consider a stochastic reachability game G. Let Y the set of functions µ : V Ñ r0, 1s, it is a
lattice when equipped with the componentwise order. We define the operator OG : Y Ñ Y by:

OGpµqpuq “

$

’

’

&

’

’

%

1 if u P Win,
max tµpvq : uÑ v P Eu if u P VMax,
min tµpvq : uÑ v P Eu if u P VMin,
ř

vPV δpuqpvq ¨ µpvq if u P VRandom.

Since OG is monotonic, it has a least fixed point, which is also the least pre-fixed point.

Theorem 2. Let G a stochastic reachability game. The least fixed point of OG computes the values of
G. Furthermore, any uniform pure positional strategy τ for Min that satisfies

u P VMin : τpuq P argmin
!

valGpvq : uÑ v P E
)

is optimal.

Given a strategy σ, we write Grσs for the game obtained by restricted the moves of Max to those
prescribed by σ. It is a one-player game, since only Min has choices to make.
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The value iteration algorithm

Algorithm 1: The value iteration algorithm.
Data: A stochastic reachability game.
Choose µ
while true do

µÐ OGpµq

return µ

Question 1. Prove that if µ ď valG and µ ď OGpµq, then the value iteration computes in the limit
the values. Suggest two different ways of choosing µ satisfying these assumptions. Explain why
the statement in the previous version of this homework was not easy to prove: it is not clear why
stopping when ||OGpµq ´ µ|| ď ε would yield an ϵ-approximation of the values (it actually is still an
open problem, which is only known to hold when the operator O is contracting).

The strategy improvement algorithm

The key idea behind strategy improvement is to use valσ to improve the strategy σ by switching
edges, which is an operation that creates a new strategy. This involves defining the notion of
improving edges: let us consider a vertex u P VMax, we say that e : u ÝÑ v is an improving edge if

valσpvq ą valσpuq.

Intuitively: according to valσ, playing e is better than playing σpuq.
Given a strategy σ and a set of improving edges S (for each u P VMax, S contains at most one

outgoing edge of u), we write σrSs for the strategy

σrSspuq “

#

e if there exists e “ u ÝÑ v P S,

σpvq otherwise.

The difficulty is that an edge being improving does not mean that it is a better move than the
current one in any context, but only according to the value function valσ, so it is not clear that
σrSs is better than σ. Strategy improvement algorithms depend on the following two principles:

• Progress: updating a strategy using improving edges is a strict improvement,

• Optimality: a strategy which does not have any improving edges is optimal.

The pseudocode of the algorithm is given in Algorithm 2. The algorithm is non-deterministic,
in the sense that both the initial strategy and at each iteration, the choice of improving edge can
be chosen arbitrarily. A typical choice, called the “greedy all-switches” rule, choosing for each
u P VMax a maximal improving edge, meaning

argmax tvalσpvq : u ÝÑ v P Eu .

Let us write σ ď σ1 if for all vertices u we have valσpuq ď valσ
1

puq, and σ ă σ1 if additionally
␣pσ1 ď σq. We make the following observation.

In this homework we will prove the optimality property, but not the progress property.

Theorem 3 (Progress property for the strategy improvement). Let σ a strategy and S a set of
improving edges. We let σ1 “ σrSs. Then σ ă σ1.

Let σ be any strategy of Max and S a set of improving edges. We let σ1 “ σrSs.

2



Algorithm 2: The strategy improvement algorithm.
Choose an initial strategy σ0 for Max
for i “ 0, 1, 2, . . . do

Compute valσi and the set of improving edges
if σi does not have improving edges then

return σi

Choose a non-empty set Si of improving edges
σi`1 Ð σirSis

Question 2. Prove the following properties:

• valσ ď OGrσ1
spvalσq ď OGpvalσq.

• The inequality valσpuq ď OGpvalσqpuq is strict if and only if u is a vertex of Max that has at least
one improving edge.

• The inequality valσpuq ď OGrσ1
spvalσqpuq is strict if u has an outgoing edge in S.

• If S is constructed by the greedy all-switches rule, then OGrσ1
spvalσq “ OGpvalσq.

Question 3 (Optimality property for the strategy improvement). Prove that if σ is a strategy that
has no improving edges, then σ is optimal.

Question 4. Conclude that the strategy improvement algorithm is correct, independently of the
choice of sets of improving edges.

Question 5. Let us write σ0 ă σ1 ă σ2 ă ¨ ¨ ¨ for the sequence of positional strategies in an execution
of the strategy improvement algorithm with the greedy all-switches rule over G and µ0 ď µ1 ď µ2 ď ¨ ¨ ¨

for the sequence of functions computed by the corresponding value iteration algorithm over G
initialised at valσ0 : for all k, we have µ0 “ valσ0 and µk`1 “ OGpµkq.

Prove that for all k, we have µk ď valσk . What does this say about these two algorithms?

We now look at some properties of the influence of the choice of the sets of improving edges for
the strategy improvement algorithm.

Question 6. Find an example where the greedy all-switches rule is suboptimal, meaning another
sequence of choices of sets of improving edges yields less iterations than greedy all-switches.

Question 7. Prove that there exists a sequence of choices of sets of improving edges which makes
strategy improvement terminate in at most |VMax| many iterations.
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